Zirconia-based materials for catalytic conversions

Our capability

Luxfer MEL Technologies supplies both doped and undoped zirconium compounds (hydroxides and oxides) for use in a wide range of catalytic applications. Materials are solid powders, with tunable properties resulting from our proprietary manufacturing processes. These are carried out at multi-ton scale.

LMT also supplies zirconium solutions that are frequently used as binders (or indeed a Zr-source) in catalyst forming.

Advantages

Easy separation from reaction media

• Catalysts can be easily separated from the reaction media

High activity / low temperature operation

• Good interaction with supported metals, and properties can be modified by dopants

Structure

• They have developed (tunable) porosity and defined crystalline structure

Stability

• Particularly under hydrothermal (aqueous) conditions, ideal for 'green' processes

Reusability

• Catalysts can be used several times during reaction cycle

Environmentally friendly

• Zirconia-based materials do not release any halogen containing or other compounds which might corrode equipment, impact eco-system

Typical dopants

Table 1.

Dopant	Property		
Undoped	Amphoteric		
SO ₄ , WO ₃	Strong acidity		
SiO ₂ , Al ₂ O ₃	Mild acidity		
MgO, La ₂ O ₃	Basic		
CeO ₂	Redox		

*Other dopants can potentially be worked with, e.g. transition metal oxides, other rare-earth oxides, SnO₂, Nb₂O₅, PO₄.

Multiple dopants/combinations are also manufactured on a regular basis.

Physical properties

Table 2.

	Synthetic route				
	C1	С3	C4	New	
D ₅₀ (μm)	~1 (A) ~25 (B)	~5	~25 (broad)	~20 (broad)	
Porosity	Low	Med	High	v.High	
Surface Area	Med	Med	High	v.High	
Active Sites	Med	Med	High	v.High	

*Active sites may refer to acidity for example

Applications

Typically has involved isomerisation of alkanes in gasoline upgrading (super-acid).

However, zirconia-based supports have attracted a lot of interest for "green" processes, for example cellulose conversion¹⁴. Other examples are shown on the next page.

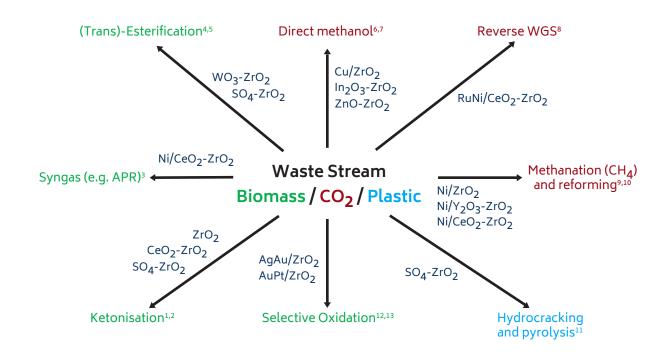


Figure 1.

References:

- 1. Lilga, M. A. et al., Catalysis Today, 302, 2018, 80-86
- 2. Huq, N. A., et al., PNAS, 118 (13), 2021, e2023008118
- 3. Coronado, I., et al., Applied Catalysis A : General, 567, 2018, 112-121
- 4. Dos Santos, V. C., et al., Applied Catalysis B : Environmental, 162, 2015, 75-84
- 5. Sani, Y. M., et al., Applied Catalysis A : General, 470, 2014, 140-161
- 6. Li, K, and Chen, J. G., ACS Catalysis, 9, 2019, 7840-7861
- 7. Ye, R., et al., Nature Communications, 10, 2019, Article No. 5698
- 8. Sache, E. L., et al., ACS Sustainable Chemistry & Engineering, 11, 2020, 4614-4622
- 9. Frontera, P., et al., Catalysts, 7 (2), 2017, 59
- 10. Fakeeha, A. H., et al., Journal of Saudi Chemical Society, 25, 2021, 101244
- 11. Almustapha, M. N., et al., Journal of Analytical and Applied Pyrolysis, 125, 2017, 296-303
- 12. Mounguengui-Diallo, M., et al., Applied Catalysis A : General, 551, 2018, 88-97
- 13. Schade, O. R.. et al., Advanced Synthesis & Catalysis, 362, 2020, 5681-5696
- 14. Nguyen, V. C., et al., Molecular Catalysis, 476, 2019, 110518

⁺ The information contained within is meant as a guideline only

Copyright © Luxfer MEL Technologies 2022. The information provided within this document is aimed to assist manufacturers and other interested parties in the use of Luxfer MEL Technologies products. Luxfer MEL Technologies accepts no liability in whole or in part from use and interpretation of the data herein. All information is given in good faith but without warranty. Freedom from patent rights must not be assumed. Health and Safety information is available for all Luxfer MEL Technologies products. **DS-1060-0522**

Luxfer MEL Technologies

Elektron Technology Centre Lumns Lane, Manchester, M27 8LN, UK T +44 (0) 161 911 1000 Luxfer MEL Technologies 500 Barbertown Point Breeze Road Flemington, NJ 08822, USA T +1 908 782 5800